首页> 外文OA文献 >Should we sample a time series more frequently?:Decision support via multirate spectrum estimation (with discussion).
【2h】

Should we sample a time series more frequently?:Decision support via multirate spectrum estimation (with discussion).

机译:我们是否应该更频繁地采样时间序列?:通过多速率频谱估计(带有讨论)的决策支持。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Suppose we have a historical time series with samples taken at a slow rate, e.g. quarterly. This article proposes a new method to answer the question: is it worth sampling the series at a faster rate, e.g. monthly? Our contention is that classical time series methods are designed to analyse a series at a single and given sampling rate with the consequence that analysts are not often encouraged to think carefully about what an appropriate sampling rate might be. To answer the sampling rate question we propose a novel Bayesian method that incorporates the historical series, cost information and small amounts of pilot data sampled at the faster rate. The heart of our method is a new Bayesian spectral estimation technique that is capable of coherently using data sampled at multiple rates and is demonstrated to have superior practical performance compared to alternatives. Additionally, we introduce a method for hindcasting historical data at the faster rate. A freeware R package, regspec, is available that implements our methods. We illustrate our work using official statistics time series including the United Kingdom consumer price index and counts of United Kingdom residents travelling abroad, but our methods are general and apply to any situation where time series data are collected.
机译:假设我们有一个历史时间序列,并且采样速度很慢,例如季刊。本文提出了一种新方法来回答这个问题:是否值得以更快的速率对系列进行采样,例如每月一次?我们的争论是经典的时间序列方法被设计为以单个给定的采样率分析序列,其结果是通常不鼓励分析人员仔细考虑合适的采样率。为了回答采样率问题,我们提出了一种新颖的贝叶斯方法,该方法结合了历史序列,成本信息以及以更快的速率采样的少量导频数据。我们方法的核心是一种新的贝叶斯频谱估计技术,该技术能够相干地使用以多种速率采样的数据,并且与其他方法相比,具有出色的实用性能。此外,我们介绍了一种以更快的速度后播历史数据的方法。提供了一个免费的R包regspec,用于实现我们的方法。我们使用官方统计时间序列(包括英国消费者价格指数和出国旅行的英国居民人数)来说明我们的工作,但是我们的方法是通用的,适用于收集时间序列数据的任何情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号